1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
#![no_std]
#![warn(missing_docs)]
//! `irapt` is an implementation of the IRAPT pitch estimation algorithm.
//!
//! IRAPT is an "instantaneous" version of the Robust Algorithm for Pitch Tracking (RAPT).
//!
//! # Usage
//!
//! Currently, the [parameters](Parameters) to [`Irapt`] are technical and may be difficult to tune, but the
//! [`Parameters::default`] provides a sensible set of defaults for ordinary human speech which is computationally
//! efficient, given the input can be resampled to the default [`Parameters::sample_rate`].
//!
//! The input must be given as a [`VecDeque`] to [`Irapt::process`] which is to facilitate the sliding analysis window.
//! The number of samples removed from the buffer by `process` can be calculated on each invocation in order to track
//! the global sample index at which each pitch is estimated:
//!
//! ```
//! use irapt::{Irapt, Parameters};
//! use std::collections::VecDeque;
//! use std::f64::consts::PI;
//!
//! let parameters = Parameters::default();
//! let mut irapt = Irapt::new(parameters.clone()).expect("the default parameters should be valid");
//!
//! let mut sample_buffer = (0..parameters.sample_rate as usize)
//! .map(|sample_index| f64::sin(sample_index as f64 / parameters.sample_rate * 2.0 * PI * 100.0))
//! .collect::<VecDeque<_>>();
//!
//! let mut sample_index = 0;
//! while let (initial_sample_buffer_len, Some(output)) = (
//! sample_buffer.len(),
//! irapt.process(&mut sample_buffer),
//! ) {
//! let estimated_pitch = output.pitch_estimates().final_estimate();
//! let estimated_pitch_index = (sample_index as isize + estimated_pitch.offset) as usize;
//! let estimated_pitch_time = estimated_pitch_index as f64 / parameters.sample_rate;
//! println!("estimated pitch at {:0.3}: {}Hz with energy {}",
//! estimated_pitch_time, estimated_pitch.frequency, estimated_pitch.energy);
//! sample_index += initial_sample_buffer_len - sample_buffer.len();
//! }
//! ```
extern crate alloc;
#[macro_use]
mod util;
#[doc(hidden)]
pub mod candidates;
pub mod error;
#[doc(hidden)]
pub mod fir_filter;
#[doc(hidden)]
pub mod harmonics;
#[doc(hidden)]
pub mod interpolate;
#[doc(hidden)]
pub mod polyphase_filter;
use self::candidates::{CandidateFrequencyIter, CandidateGenerator, CandidateSelectionStepIter, CandidateSelector};
use self::error::InvalidParameterError;
use self::harmonics::HarmonicParametersEstimator;
use alloc::collections::VecDeque;
use core::iter::Enumerate;
use core::ops::RangeInclusive;
/// Implementation of the IRAPT pitch estimation algorithm.
///
/// IRAPT is an "instantaneous" version of the Robust Algorithm for Pitch Tracking. Though pitch estimates are provided
/// every [`harmonics_estimation_interval`] (`0.005` seconds by default), a larger sliding window of
/// [`candidate_selection_window_duration`] (`0.3` seconds by default) is used to improve accuracy at the cost of a
/// small delay.
///
/// [`harmonics_estimation_interval`]: Parameters::harmonics_estimation_interval
/// [`candidate_selection_window_duration`]: Parameters::candidate_selection_window_duration
pub struct Irapt {
parameters: Parameters,
estimator: HarmonicParametersEstimator,
candidate_generator: CandidateGenerator,
candidate_selector: CandidateSelector,
}
/// Various tunable parameters for [`Irapt`].
///
/// The [`Default`] implementation provides suggested defaults for all parameters, given that the input is resampled
/// near to the suggested default sample rate.
#[derive(Clone, Debug)]
pub struct Parameters {
/// The constant sample rate, in Hz, the input was sampled with.
///
/// The suggested default is `6000.0`.
pub sample_rate: f64,
/// Interval, in seconds, at which harmonics of the input are estimated.
///
/// The suggested default is `0.005`.
pub harmonics_estimation_interval: f64,
/// Duration, in seconds, of the sliding window upon which harmonics of the input are estimated.
///
/// The suggested default is `0.05`.
pub harmonics_estimation_window_duration: f64,
/// Duration, in seconds, of the sliding window upon which pitches are estimated.
///
/// A shorter candidate selection window will be more responsive to fluctuations in input, but less accurate. The
/// suggested default is `0.3`.
pub candidate_selection_window_duration: f64,
/// Frequency range, in Hz, within which to detect pitch.
///
/// Wider frequency ranges require a larger [`candidate_generator_fft_len`] or [`sample_rate`] to maintain adequate
/// frequency resolution of pitch detection. The suggested default for any human speech is `50.0..=450.0`.
///
/// [`candidate_generator_fft_len`]: Self::candidate_generator_fft_len
/// [`sample_rate`]: Self::sample_rate
pub pitch_range: RangeInclusive<f64>,
/// Size of the FFT used for candidate generation.
///
/// The candidate generation FFT size affects the frequency resolution of pitch detection. Larger FFT sizes result
/// in a higher resolution. The suggested default is `16384`.
///
/// Certain FFT sizes, e.g. powers of two, are more computationally efficient than others. See the
/// [`rustfft`] crate for the supported optimizations based on FFT size.
///
/// [`rustfft`]: https://docs.rs/rustfft
pub candidate_generator_fft_len: usize,
/// Half-length of the window of the interpolator used on generated pitch candidates.
///
/// A window too short for the given [`candidate_generator_fft_len`] will suffer from artifacts resulting from poor
/// interpolation. The suggested default is `12`.
///
/// The window half-length must be less than or equal to both:
///
/// * `(sample_rate / pitch_range.end()).floor()`, and
/// * `candidate_generator_fft_len - (sample_rate / pitch_range.start()).ceil()`
///
/// [`candidate_generator_fft_len`]: Self::candidate_generator_fft_len
pub half_interpolation_window_len: u32,
/// Number of pitch candidates to interpolate in between each generated pitch candidate.
///
/// The suggested default in `2`.
pub interpolation_factor: u8,
/// Taper factor applied to candidates within a time step.
///
/// Candidates within a single time step will be weighted from `1.0 - candidate_taper..=1.0` linearly proportional
/// to their frequencies. The suggested default is `0.25`.
pub candidate_taper: f64,
/// Decay factor applied to candidates at each time step within the given [`candidate_selection_window_duration`].
///
/// The suggested default is `0.95`.
///
/// [`candidate_selection_window_duration`]: Self::candidate_selection_window_duration
pub candidate_step_decay: f64,
/// Assumed maximum distance a valid pitch will change within the [`harmonics_estimation_interval`].
///
/// The unit of distance is in candidates, which is an arbitrary logarithmic frequency scale.
///
/// [`harmonics_estimation_interval`]: Self::harmonics_estimation_interval
pub candidate_max_jump: usize,
}
/// The output of [`Irapt::process`].
///
/// This `struct` holds the output, including estimated pitches, of the IRAPT algorithm after processing a single time step, and is created
/// by the [`process`](Irapt::process) method on [`Irapt`]. See its documentation for more.
pub struct Output<'a> {
estimated_pitches: EstimatedPitchIter<'a>,
more_output: bool,
}
/// An estimate of the pitch in the input at a specific sample offset.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct EstimatedPitch {
/// Frequency, in Hz, of the estimated pitch.
pub frequency: f64,
/// Arbitrary measure, from `0.0..`, of the energy associated with the estimated pitch.
pub energy: f64,
/// The offset in samples within the input buffer (_before_ removal of consumed samples) at which the pitch was estimated. This may be
/// negative, since estimates can be returned for samples which have already been removed from the input buffer.
pub offset: isize,
}
/// An iterator over pitches estimated over time in the input, in reverse chronological order.
///
/// This `struct` is created by the [`pitch_estimates`](Output::pitch_estimates) method on [`Output`]. See its documentation for more.
#[derive(Clone)]
pub struct EstimatedPitchIter<'a> {
selected_candidates: Enumerate<CandidateSelectionStepIter<'a>>,
candidate_frequencies: CandidateFrequencyIter,
last_step_sample_index: usize,
step_len: usize,
}
impl Irapt {
/// Constructs a new `Irapt`.
///
/// # Errors
///
/// If any of the supplied parameters are invalid or conflict with each other, then an error is returned.
///
/// # Examples
///
/// ```
/// use irapt::{Irapt, Parameters};
///
/// let mut irapt = Irapt::new(Parameters::default()).expect("the default parameters should be valid");
/// ```
pub fn new(parameters: Parameters) -> Result<Self, InvalidParameterError> {
let estimator = HarmonicParametersEstimator::new(parameters.harmonics_window_len());
let candidate_generator = CandidateGenerator::new(
parameters.candidate_generator_fft_len,
parameters.half_interpolation_window_len,
parameters.interpolation_factor,
parameters.sample_rate,
parameters.pitch_range.clone(),
)?;
let candidate_selector = CandidateSelector::new(
parameters.candidate_selection_window_len(),
parameters.candidate_taper,
candidate_generator.normalized_candidate_frequencies(parameters.sample_rate, parameters.pitch_range.clone()),
);
Ok(Self {
parameters,
estimator,
candidate_generator,
candidate_selector,
})
}
/// Returns the `Parameters` specified during construction.
pub fn parameters(&self) -> &Parameters {
&self.parameters
}
/// Process input from a queue of samples in a [`VecDeque`].
///
/// As many samples as necessary to calculate the next pitch estimate are read from the [`VecDeque`], otherwise
/// [`None`] is returned if more are required. To process as many samples as possible from the [`VecDeque`],
/// `process` should be called repeatedly until [`None`] is returned.
///
/// Input samples consumed are eventually removed from the front of the [`VecDeque`] by `process`, but a fixed-size
/// window of past samples are left remaining in the [`VecDeque`] for access by later calls to `process` and are
/// only removed when they are no longer needed.
///
/// # Examples
///
/// ```
/// use irapt::{Irapt, Parameters};
/// use std::collections::VecDeque;
/// use std::f64::consts::PI;
///
/// let parameters = Parameters::default();
/// let mut irapt = Irapt::new(parameters.clone()).expect("the default parameters should be valid");
///
/// // Use a 100Hz sine wave as an example input signal
/// let mut samples = (0..).map(|sample_index| f64::sin(sample_index as f64 / parameters.sample_rate * 2.0 * PI * 100.0));
///
/// // Collect half of a second of input
/// let mut sample_buffer = VecDeque::new();
/// sample_buffer.extend(samples.by_ref().take(parameters.sample_rate as usize / 2));
///
/// // Process as many samples as possible
/// while let Some(output) = irapt.process(&mut sample_buffer) {
/// let estimated_pitch = output.pitch_estimates().final_estimate();
/// println!("estimated pitch: {}Hz with energy {}", estimated_pitch.frequency, estimated_pitch.energy);
/// }
///
/// // Simulate that half of a second more samples have become availoble and process them
/// sample_buffer.extend(samples.by_ref().take(parameters.sample_rate as usize / 2));
///
/// while let Some(output) = irapt.process(&mut sample_buffer) {
/// let estimated_pitch = output.pitch_estimates().final_estimate();
/// println!("estimated pitch: {}Hz with energy {}", estimated_pitch.frequency, estimated_pitch.energy);
/// }
/// ```
pub fn process<S: Into<f64> + Copy>(&mut self, samples: &mut VecDeque<S>) -> Option<Output<'_>> {
let initial_samples_len = samples.len();
let step_len = self.parameters.step_len();
let mut processed_step_sample_index = None;
while let (step_sample_index, Some(harmonics)) = (
initial_samples_len - samples.len() + self.estimator.next_step_samples_len(),
self.estimator.process_step(samples, step_len, self.parameters.sample_rate),
) {
let mut energy = 0.0;
let harmonics = harmonics.inspect(|harmonic| {
energy += harmonic.amplitude * harmonic.amplitude;
});
self.candidate_generator.process_step_harmonics(harmonics, self.parameters.sample_rate);
let candidates = self.candidate_generator.generate_step_candidates();
self.candidate_selector.process_step(
candidates,
energy,
self.parameters.candidate_selection_window_len(),
self.parameters.candidate_max_jump,
self.parameters.candidate_step_decay,
);
if self.candidate_selector.initialized(self.parameters.candidate_selection_window_len()) {
processed_step_sample_index = Some(step_sample_index);
break;
}
}
let last_step_sample_index = processed_step_sample_index?;
let more_output = samples.len() >= self.estimator.next_step_samples_len();
let selected_candidates = self.candidate_selector.best_candidate_steps(
self.parameters.candidate_selection_window_len(),
self.parameters.candidate_max_jump,
);
Some(Output {
estimated_pitches: EstimatedPitchIter {
selected_candidates: selected_candidates?.enumerate(),
candidate_frequencies: self.candidate_generator.candidate_frequencies(self.parameters.sample_rate),
last_step_sample_index,
step_len: self.parameters.step_len(),
},
more_output,
})
}
/// Resets all internal state associated with the sliding analysis window.
///
/// The internal state after a reset is equivalent to that of a newly constructed [`Irapt`]. Resetting can be useful
/// to avoid causing artifacts in the analysis when skipping a number of samples in the input without processing
/// them.
///
/// # Examples
///
/// ```
/// use irapt::{Irapt, Parameters};
/// use std::collections::VecDeque;
/// use std::f64::consts::PI;
///
/// let parameters = Parameters::default();
/// let mut irapt = Irapt::new(parameters.clone()).expect("the default parameters should be valid");
///
/// // Use a 100Hz sine wave as an example input signal
/// let mut samples = (0..).map(|sample_index| f64::sin(sample_index as f64 / parameters.sample_rate * 2.0 * PI * 100.0));
///
/// // Collect half of a second of input
/// let mut sample_buffer = VecDeque::new();
/// sample_buffer.extend(samples.by_ref().take(parameters.sample_rate as usize / 2));
///
/// while let Some(output) = irapt.process(&mut sample_buffer) {
/// let estimated_pitch = output.pitch_estimates().final_estimate();
/// println!("estimated pitch: {}Hz with energy {}", estimated_pitch.frequency, estimated_pitch.energy);
/// }
///
/// // Simulate that many more samples have become available
/// let more_samples = samples.by_ref().take(parameters.sample_rate as usize * 10);
///
/// // Reset irapt, clear the input buffer, skip all but half a second of input samples, and process the rest
/// irapt.reset();
/// sample_buffer.clear();
/// sample_buffer.extend(more_samples.skip(parameters.sample_rate as usize * 19 / 2));
///
/// while let Some(output) = irapt.process(&mut sample_buffer) {
/// let estimated_pitch = output.pitch_estimates().final_estimate();
/// println!("estimated pitch: {}Hz with energy {}", estimated_pitch.frequency, estimated_pitch.energy);
/// }
/// ```
pub fn reset(&mut self) {
self.estimator.reset();
self.candidate_selector.reset();
}
}
//
// Parameters impls
//
impl Parameters {
/// Suggested default parameters.
pub const DEFAULT: Self = Self {
sample_rate: 6000.0,
harmonics_estimation_interval: 0.005,
harmonics_estimation_window_duration: 0.05,
candidate_selection_window_duration: 0.3,
pitch_range: 50.0..=450.0,
candidate_generator_fft_len: 16384,
half_interpolation_window_len: 12,
interpolation_factor: 2,
candidate_taper: 0.25,
candidate_step_decay: 0.95,
candidate_max_jump: 23,
};
fn candidate_selection_window_len(&self) -> usize {
(self.candidate_selection_window_duration / self.harmonics_estimation_interval + 0.5) as usize
}
fn harmonics_window_len(&self) -> u32 {
(self.harmonics_estimation_window_duration * self.sample_rate / 2.0).round() as u32 * 2 + 1
}
fn step_len(&self) -> usize {
(self.harmonics_estimation_interval * self.sample_rate).round() as usize
}
}
impl Default for Parameters {
fn default() -> Self {
Self::DEFAULT
}
}
//
// Output impls
//
impl Output<'_> {
/// Returns whether further output can be produced given the input samples.
///
/// More output can be produced by calling [`Irapt::process`].
pub fn more_output(&self) -> bool {
self.more_output
}
/// Returns all pitch estimates for the given input, including both those tentative and final, in reverse chronological order.
///
/// All but the last of the yielded pitches are tentative estimates calculated up to [`candidate_selection_window_duration`] seconds in
/// the past. The estimates are returned in reverse chronological order. The exact sample offsets for the estimates are returned in
/// [`EstimatedPitch::offset`].
///
/// The last estimate yielded is final for the given time offset. It can also be retrieved by calling [`final_estimate`] on the returned
/// iterator.
///
/// [`candidate_selection_window_duration`]: Parameters::candidate_selection_window_duration
/// [`final_estimate`]: EstimatedPitchIter::final_estimate
pub fn pitch_estimates(&self) -> EstimatedPitchIter<'_> {
self.estimated_pitches.clone()
}
}
//
// EstimatedPitchIter impls
//
impl EstimatedPitchIter<'_> {
/// Returns a final pitch estimate for the given input, at a time delay.
///
/// The returned pitch is the final estimate calculated at approximately [`candidate_selection_window_duration`] seconds in the past.
/// The exact sample offset for the estimate is returned in [`EstimatedPitch::offset`].
///
/// [`candidate_selection_window_duration`]: Parameters::candidate_selection_window_duration
pub fn final_estimate(self) -> EstimatedPitch {
self.last().unwrap_or_else(|| unreachable!())
}
}
impl Iterator for EstimatedPitchIter<'_> {
type Item = EstimatedPitch;
fn next(&mut self) -> Option<Self::Item> {
let (step_index, candidate_selection) = self.selected_candidates.next()?;
let frequency = (self.candidate_frequencies.clone())
.nth(candidate_selection.selected_candidate_index)
.unwrap_or_else(|| panic!("candidate index out of bounds"));
Some(EstimatedPitch {
frequency,
energy: candidate_selection.energy,
offset: self.last_step_sample_index.wrapping_sub((1 + step_index) * self.step_len) as isize
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.selected_candidates.size_hint()
}
}
impl ExactSizeIterator for EstimatedPitchIter<'_> {}